Cobalt Catalysts Decorated with Platinum Atoms Supported on Barium Zirconate Provide Enhanced Activity and Selectivity for CO2 Methanation
نویسندگان
چکیده
A perovskite-structured barium zirconate, BaZrO3 (BZ), support is demonstrated to enhance the activity, relative to γ-Al2O3, of Co nanoparticle catalysts decorated with Pt for CO2 methanation. The CO2 methanation reaction may play a central role in both CO2 utilization and energy storage strategies for renewable energy. These catalysts require cooperative hydrogen transport between the supported Pt and Co species to provide the desired functionality, as CO2 preferentially dissociates on Co with H2 dissociating primarily on Pt. In this work, this interaction is enhanced through an atomic decoration of Pt on the Co nanoparticle surface. This morphology is achieved through immobilization of colloidal Pt particles on the Co/BaZrO3 support followed by selected catalyst pretreatment conditions to atomically disperse the Pt. Furthermore, at the same loading of Co and Pt (1 and 0.2 wt %, respectively), the barium zirconate support provides a more than 6-fold increase in CH4 formation rate in comparison to previously studied γ-Al2O3 supports at 325 °C. This was accompanied by a CH4 selectivity of over 70%, which was maintained over the measured temperature range of 250−350 °C; in fact, the selectivity was 80% at 325 °C, in comparison to only 43% for γ-Al2O3 support. This enhancement is attributed to a strong interaction between the Co particles and the BaZrO3 support. Yttria doping at 5 and 30 atom % levels on the zirconia site led to a reduction of the catalytic performance relative to BaZrO3, although the activity displayed at low levels of substitution was still higher than that over the γ-Al2O3 support.
منابع مشابه
Solvent Pre-treated Effects of Carbon Nanotube-supported Cobalt Catalysts on Activity and Selectivity of Fischer-Tropsch Synthesis
In this study, the effect of preparation technique of carbon nanotube (CNT)-supported cobalt catalysts on the activity and selectivity of Fischer-Tropsch synthesis (FTS) was studied. Different concentrations of acetic acid were used for the pretreatment of the catalyst support to modify the surface properties of CNT. This modification improved the reduction degree and dispersion of supported co...
متن کاملCATALYTIC REFORMING OF n-HEPTANE ON PLATINUM-TUNGSTEN SUPPORTED ON GAMMA-ALUMINA
The mono-metallic and bi-metallic catalysts have been prepared by impregnating with solutions containing a compound of H2PtCl6,WO3 and 1ml HCl (0.1 mol). It should be noted that the catalysts’ activity and selectivity have been determined under these conditions : 450-5000C ,and 15-25atm by H2. For converting n-heptane , the molar ratio H2/C7H16 is 5 , and LHSV is 1.5ml/h. It has been proved tha...
متن کاملCobalt Loading Effects on the Structure and Activity for Fischer-Tropsch and Water-Gas Shift Reactions of Co/Al2O3 Catalysts
An extensive study of Fischer-Tropsch synthesis (FTS) on alumina-supported cobalt catalysts with different amounts of cobalt is reported. Up to 40 wt % of cobalt, is added to the catalysts by impregnation method. The effect of the cobalt loading on the reducibility of the cobalt oxide species, dispersion of the cobalt, average clusters size, water-gas shift (WGS) activity and activity and s...
متن کاملDeactivation of cobalt and nickel catalysts in Fischer-Tropsch synthesis and methanation
Deactivation of cobalt and nickel catalysts in Fischer-Tropsch synthesis and methanation JAVIER BARRIENTOS Akademisk avhandling som med tillstånd av KTH i Stockholm framlägges till offentlig granskning för avläggande av teknologie doktorsexamen fredagen den 23 september kl. " True wisdom comes to each of us when we realize how little we understand about life, ourselves, and the world around us....
متن کاملPreparation of a Novel Super Active Fischer-Tropsch Cobalt Catalyst Supported on Carbon Nanotubes
The potential of carbon nanotubes (CNT) supported cobalt catalysts for Fischer-Tropsch (FT) reaction is shown. Using the wet impregnation method cobalt on carbon nanotubes catalysts were prepared with cobalt loading varying from 15 to 45 wt. %. The catalysts are characterized by different methods including: BET physisorption, X-ray diffraction, hydrogen chemisorption, and temperature-progra...
متن کامل